
690 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 6, NOVEMBER 2010

Hardware/Software Codesign for a Fuzzy Autonomous
Road-Following System

Yi Fu, Howard Li, Senior Member, IEEE, and Mary E. Kaye

Abstract—In this research, a fuzzy logic controller is designed for vision-
based autonomous road-following. Because of its high-speed response,
portability, and flexibility, a field programmable gate array is applied to
implement this control system. Furthermore, a novel hardware/software
partitioning method using the genetic algorithm is developed. This method
is capable of finding the tradeoff among several evaluation factors under
conditions of hard constraints. A small-scaled intelligent vehicle, which is
capable of autonomous road-following is built and the proposed controller
is tested in the real-world environment. Experiments of hardware imple-
mentation and codesign implementation are presented and compared.

Index Terms—Embedded system, field programmable gate array
(FPGA), fuzzy logic controller (FLC), genetic algorithm (GA), hard-
ware/software codesign, intelligent vehicle.

I. INTRODUCTION

Autonomous road-following is one of the major research topics in
the area of intelligent vehicles [1], [2]. Generally speaking, autonomous
road-following requires two major steps: road feature extraction and
speed/steering control of the vehicles [3]. Control algorithms should be
considered as an important issue in road-following to ensure safe and
smooth rides. Human drivers can drive a car smoothly with their driving
expertise rather than knowledge on control theory. This fact leads us
to the fuzzy logic solution. Fuzzy logic control has been proven to
be an effective and active method in solving control problems during
the past decades. Fuzzy logic controllers (FLCs) provide a means of
converting a linguistic control strategy based on expert knowledge into
an automatic control strategy [4], [5].

FLC implementations can be divided into two categories: general-
purpose-processor implementation with flexible fuzzy behaviors and
dedicated hardware implementation for specific applications [6]. The
general-purpose-processor implementation can be developed quickly
and applied in various fields. It can process instructions adequately
when the tasks are not too complicated. However, the general-purpose-
processor implementation cannot guarantee real-time response when
the complexity of tasks increases or multiple tasks need to be executed
simultaneously. The hardware implementation of a FLC has better per-
formance compared with the single processor. Even software imple-
mentations with multiple processors can hardly compete with hardware
implementations in terms of execution speed. However, hardware im-
plementations require longer development time and can only be used
in restricted fields [7].

A preferable FCL hardware implementation should meet two re-
quirements: flexibility and good performance. In the past few decades,
reconfigurable hardware, which provides a compromise between
specific-purpose hardware and general-purpose processors has received
increasing attention in implementing algorithms due to its adaptability

Manuscript received September 8, 2009; revised January 26, 2010; accepted
April 7, 2010. Date of publication June 3, 2010; date of current version October
15, 2010. This paper was recommended by Associate Editor X. Guan.

The authors are with the Department of Electrical and Computer Engineering,
University of New Brunswick, Fredericton, NB E3B 5A3, Canada (e-mail:
yi.fu@unb.ca; howard@unb.ca; kaye@unb.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCC.2010.2049262

in diverse applications, real-time performance, and a short developing
period. Field programmable gate arrays (FPGAs), an example of recon-
figurable hardware, are flexible because they can be reconfigured and
reused easily. By designing logic components on FPGAs, we can eas-
ily verify and turnaround the design by programming the configuration
stream.

Hardware implementations usually have better real-time perfor-
mance, but higher cost and longer development time compared with
software implementations. Nowadays, hardware/software codesign,
which aims to find the tradeoff between hardware, software, and
scheduling schemes in terms of performance and cost optimization
is common in embedded system design. Partitioning the system into
hardware and software implementations is the major concern in hard-
ware/software codesign [8], [9].

A lot of work has been done on hardware/software partitioning.
Some of the existing partitioning approaches are: mathematical pro-
gramming, greedy heuristics, and iterative improvement approaches.
Huiqun and Wong [10] present an integrated hardware/software par-
titioning and scheduling strategy, where the partitioning process uses
the information provided by the scheduling solutions as a guide. Ernst
et al. [11] use a binary search algorithm to minimize the hardware price
and satisfy other constraints. Mathematical programming can only be
applied to small instances of the codesign problem. Search algorithms
and iterative improvement algorithms suffer from the limitation that
they may become trapped in local minima. Genetic algorithms (GAs)
are known for success in searching solutions in a global manner. GAs
are applied in hardware/software codesign in [13] and [14]. How-
ever, [13] only allows one processor, while the cost and execution time
of communication is not considered. Dick and Jha [14] utilize the multi
objective GA, which borrows the Pareto-optimal theory from the Game
theory. However, this method does not consider the concurrency of two
or more tasks. Moreover, because of the complexity of this partitioning
method, the computation resource used for partitioning may raise the
overall codesign expense.

In this paper, we will design an autonomous road-following embed-
ded system for intelligent vehicles. A FLC will be developed to control
the steering wheel of the vehicle. The proposed FLC is carried out on
the FPGA board. With the help of electronic design automation (EDA)
tools, the very high speed integrated circuits hardware description lan-
guage (VHDL) program that models the system is directly used for
synthesis, verification, and implementation [12]. Furthermore, a novel
partitioning method using the GA is developed. The complexity of the
proposed method is between the complexity of [13] and [14]. This
method is capable of finding the tradeoff among several evaluation fac-
tors under conditions of constraints. It utilizes multiple chromosomes
for each individual, so that concurrency of several tasks is acceptable
for codesign. Moreover, it takes communications between various de-
vices into consideration; therefore, the cost of the codesign solution
can be predicted more precisely. The rest of the paper is organized as
follows: the kinematic model of the vehicle and the experimental setup
are studied in Section II. Section III presents the FPGA design of the
FLC. Section IV represents the optimization of the system implemen-
tation using software/hardware codesign. Simulation and experimental
results are shown in Section V. The last section of this paper concludes
the research.

II. EXPERIMENTAL SETUP AND MODELING OF THE CAR

The road-following problem of the intelligent vehicle with kinematic
constraints in the 2-D workspace is studied. Considering the robotic
vehicle modeled in Fig. 1, the rear wheels are aligned with the vehi-
cle, while the front wheels are allowed to pivot about the axes. Let

1094-6977/$26.00 © 2010 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 6, NOVEMBER 2010 691

Fig. 1. Kinematic model of the car.

(x, y, φ, θ) denote the configuration of the robot, parameterized by
the location of the front wheels. The kinematic model of the robotic
vehicle can be represented as follows:

ẋ = u3 cos θ

ẏ = u3 sin θ (1)

θ̇ =
u3

l
tan φ

where u3 corresponds to the forward velocity of the vehicle and the
angle of the vehicle body with respect to the horizontal line is θ, the
steering angle with respect to the vehicle body is φ, (x, y) is the
location of the center point of the front wheels, and l is the length
between the front and the rear wheels.

The experimental setup of the road-following system is shown in
Fig. 2. The road-following system is implemented in a way that the
vision-based vehicle can remain between two lines while simulating
highway motion. The hardware system includes a camera with a built-
in processor, a FLC implemented on the FPGA, and a radio control
(RC) car with a fully functional steering and speeding system. This
system utilizes the camera to find the center of the road. Then, the
built-in processor of the camera calculates the error e, and sends it
to the FLC through an RS-232 port. The error is proportional to the
deviation presented in pixels. The FPGA decides how to turn the vehicle
and generates pulse width modulation (PWM) signals according to the
specification of the car to control the steering wheel. The speed and
steering of the car are controlled by varying the PWM signals. The
Altera DE2 board with a Cyclone II EP2C35F672C6 FPGA is used to
interface with the camera and the car’s existing circuitry, calculating
the steering angle.

III. DESIGN OF THE FLC

A block diagram of the specified FLC for the road-following task
is shown in Fig. 3. The desired orientation of the center line of the car
should be aligned with the road centroid. The error is the angle between
the desired orientation of the center line and the actual center line of
the car. The error is represented by e = θd − θ. To reduce the error
to zero, the steering angle should be equal to φ. φ is determined by
the FLC. The error and the change-in-error are calculated and fed into
the FLC. The FLC is designed to output control signals corresponding
to the control torque to the front steering motor to control the front
wheels’ steering angle φ.

When the car travels on the road, the DE2 board mounted on the car
receives error data from the camera through the RS-232 serial port.

Fig. 2. Steering mechanism of the RC car.

Fig. 3. Block diagram of the specified FLC.

The hardware architecture of the specific road-following circuit on
the FPGA is shown in Fig. 4. In total, there are four I/O pins for
this system: “clk” is the clock signal generated by the built-in 50 MHz
quartz oscillator on the FPGA board. This signal is used to synchronize
various modules of the system; “reset” is the input signal used to reset
the system, “RX” is the signal sent from the camera through an RS-232
port, and the output port “CTRL” is an general purpose input/output
(GPIO) pin, which sends PWM control signals to the car’s circuitry
that controls the steering wheel. The circuit of the proposed control
system contains four main modules: 1) the universal asynchronous
receiver/transmitter (UART) processing module, which processes the
serial signals sent from the camera through the RS-232 port; 2) the
change-in-error calculating module, which computes the change-in-
error value based on the previous error and the current error; 3) the
FLC module, the core circuitry of the design, which performs the fuzzy
logic computation to determine the steering angle; and 4) the output
processing module, which generates steering wheel control signals
according to the calculation of the FLC.

The FLC module is the core circuitry of the road-following control
system. It consists of a fuzzification submodule, a decision-making
submodule, and a defuzzification submodule. The fuzzification sub-
module converts error and change-in-error crisp values to fuzzy values.
The decision-making submodule includes the rule base and the infer-
ence engine, which make decisions about the steering angle according
to fuzzy linguistic rules. Finally, the defuzzification submodule con-
verts the resulting fuzzy values back to crisp values. The inputs of this
module are 16 bits, where 8 bits represent the error and another 8 bits
represent the change-in-error. The outputs are 8 bits, representing the
crisp output value. The input and the output are in the 8-bit standard
logic vector format. The implementation specifications of the proposed
FLC are as follows:

692 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 6, NOVEMBER 2010

Fig. 4. Hardware configuration of the FLC.

1) number of input variables = 2 (error e and change-in-error ė);
2) range of input variables: [0, 100] (error and change-in-error are

hexadecimal numbers; 8 bits are used for each input);
3) number of output variables = 1 (steering angle φ);
4) range of output variables: [0, 120] (output variables are hexadec-

imal numbers; 8 bits are used for the output);
5) shape of membership functions (MFs): isosceles triangles or

trapezoids;
6) number of fuzzy sets per input variable = (5, 5) (5 for e and 5

for ė);
7) number of fuzzy sets per output variable = (5);
8) resolution of membership values = 8 bits (256 values for each

membership value);
9) maximum overlapping between two MFs = 50%.
1) Fuzzification: This submodule judges which MFs are triggered

and calculates the membership value of each triggered MF. The hard-
ware architecture of this submodule is shown in Fig. 5. The inputs
of this submodule are the 8-bit error vector and the 8-bit change-in-
error vector from the change-in-error calculating module. There are
44 pins in total for the output port. “ue1” and “ue2” represent the
membership values of the two triggered MFs for the error, and “fe1”
and “fe2” are their corresponding fuzzy linguistic indexes. “uce1” and
“uce2” represent the membership values of the two triggered MFs for
the change-in-error, and “fce1” and “fce2” are their fuzzy linguistic
indexes. Since there are five MFs for both inputs, we can use a 3-bit
vector to indicate these four fuzzy linguistic indexes (23 = 8 > 5). The
shapes of MFs, and the mapping between every input interval and a
fuzzy set are predefined in the VHDL code. The number of mappings
for each input variable is equal to the fuzzy set number (i.e., 5). Each
input variable is evaluated and mapped to a fuzzy set. Then, according
to the value of this variable, a membership value is assigned. We use
two indexes for each input to indicate which two MFs are triggered.

2) Decision-Making Submodule: Fig. 6 depicts the architecture of
this submodule. It contains the fuzzy rule base, the inference engine,
and the antecedent fitness block. The decision-making submodule takes

Fig. 5. Fuzzification submodule.

the the membership values and the fuzzy linguistic indexes exported
from the fuzzification submodule as inputs. According to the input
membership values and indexes, it makes decisions based on a prede-
fined fuzzy rule base.

Since the “AND” fuzzy logic operator is used for getting antecedent
values, “Min” blocks shown in Fig. 6 are implemented to select the
minimum membership values. Four membership values exported from
the fuzzification submodule ue1, ue2, uce1, and uce2 are compared and
selected with four 2-to-1 “Min” circuits in order to get the antecedent
values of the fuzzy rules.

Four fuzzy linguistic indexes from the fuzzification submodule are
grouped into four combinations each of which contains one index from
each of the inputs. Each combination is used to choose a control rule
according to the predefined rule base. The linguistic fuzzy indexes
and the selected rules are associated with IF–THEN fuzzy conditional
statements. In VHDL, this association is defined as IF–THEN branch
statements, which can be expressed as follows:

IF (fe1 = PosL AND fce1 = PosL)
THEN R := RgtL;
ELSE IF (fe1 = Zero AND fce2 = Zero)

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 6, NOVEMBER 2010 693

Fig. 6. Decision-making submodule.

Fig. 7. Defuzzification submodule.

THEN R := Mid;
ELSE IF (fe2 = NegS AND fce1 = PosL)
THEN R := RgtS;
ELSE IF (fe2 = PosS AND fce2 = PosS)
THEN R := RgtL;
. . .;
Although only four rules are listed earlier for illustration, there are

25 fuzzy control rules in the rule base.
3) Defuzzification Submodule: The defuzzification method is

based on the center of gravity method mentioned in the previous sec-
tion. The configuration of this submodule is illustrated in Fig. 7. The
four triggered rules and their corresponding antecedent values exported
from the decision-making submodule are used as the input signals of
this submodule.

IV. OPTIMIZING THE ROAD-FOLLOWING SYSTEM WITH

HARDWARE/SOFTWARE CODESIGN

To maintain the real-time performance of embedded systems while
keeping the cost low, hardware/software codesign is usually applied
during embedded system implementation. In this section, a novel hard-
ware/software partitioning approach is proposed to optimize the imple-
mentation of the road-following system designed in previous sections.

GAs mimic the processes of natural genetic systems to solve
optimization problems by encoding the possible solutions into

chromosome-like strings of data [15]. Similar to other search algo-
rithms, GAs perform a search on a multidimensional space containing
a hypersurface known as the fitness surface. This ability makes GAs
excel at finding the tradeoff among several factors.

A novel hardware/software partitioning method using the GA is
developed. This method is capable of finding the tradeoff among several
evaluation factors under conditions of hard constraints. A small-scaled
intelligent vehicle, which is capable of autonomous road-following is
built and the proposed controller is tested in the real-world environment.

A. Proposed Method

In this partitioning problem, each individual is represented as chro-
mosomes, each of which contains many genes. The number of chro-
mosomes one individual has equals to the number of task flow paths
and each chromosome represents one task flow path. The number of
genome segments in one chromosome equals to the number of tasks in
the corresponding task flow path.

In order to find the near-optimal solution, some specific device as-
signments should be found. As the number of tasks and available de-
vices increase, it is quite time-consuming to search a specific solution
in a big search space. Each point in the search space represents one
feasible solution. For the partitioning problem, all the possible com-
binations of device assignments for tasks are solutions in the search
space. Each feasible solution can be marked by its fitness for the prob-
lem. Finding the solution is then equal to looking for some extreme
value in the search space that leads to the optimal fitness. An outline of
the GA optimization procedure for the proposed partitioning method
is listed as follows:

1) define the population size;
2) initialize generation 0 of the population. Encode the device as-

signment for each task to get their chromosomes;
3) evaluate each partitioning solution in the population;

a) if a satisfactory solution is found, go to step 5;
b) if none of the solutions in this generation meets the re-

quirement, go to step 4;
4) reproduce the new generation;

a) sort by the fitness value;
b) select good individuals;
c) crossover;
d) mutate and get new offsprings, go to step 3 with the new

generation;
5) store the near-optimal partitioning solution selected by the GA

and use it as the final solution.

B. Fitness Function

The chromosomes are evaluated according to a fitness function. It is
important to select a good fitness function, otherwise the most feasible
chromosomes may be eliminated because of the noise caused by poor
fitness evaluation.

The fitness function is modeled as follows:

fm =
1

Σ5
j=1aj Fj

(2)

where fm is the fitness function for one solution, m is the solution
index number, and j is the evaluation criterion index. Five evaluation
criteria are considered: F1 is the total performance violation of the
partitioning solution in terms of missed deadline, F2 is the violation in
terms of concurrency, F3 is the total execution time of the partitioning
implementation, F4 is the total price of the implementation, and F5

is the total power consumption. aj is the weight factor for the jth
evaluation criterion.

694 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 6, NOVEMBER 2010

Fig. 8. e, ė, and Φ during the experiment.

Fig. 9. Actual and the desired trajectory.

V. EXPERIMENT RESULTS

In order to verify the performance of the proposed methods, experi-
ments have been conducted.

A. Experiment Results of the FPGA Implementation

After simulation, synthesis, and compilation, the configuration
stream is programmed into the FPGA board for road-following tests.
We use a mocked road with two lines to guide the navigation of the intel-
ligent vehicle. The car is able to follow the road at a speed of 0.9 m/s.
Quartus’s SignalTap II Logic Analyzer is used to record experiment
data, while the car follows the curved road. Error (e), change-in-error
(ė), and the FLC control output (Φ) are recorded and plotted in Fig. 8.
Fig. 8 shows the actual control output of the FLC with respect to in-
puts. It matches the simulation result. The actual trajectory of the car is
recorded and compared with the desired trajectory, which is the center
line of the road in Fig. 9, where the actual trajectory is the average
of five experiment data. The maximum absolute error between the de-
sired trajectory and the actual trajectory of the intelligent vehicle is
1.02 in. The root-mean-square error is 0.56 in, which is relatively small
compared with the width of the road that is 8 in.

B. Experiment Results of the Partitioning

The goal of the partitioning is to move some tasks from hardware
to software, so that the cost of the embedded system will be reduced
while the specification is met. The task flowchart of the road-following
system is generated first. Then, the performance and cost estimation

Fig. 10. Task flowchart of the autonomous road-following system.

of tasks on different devices are evaluated according to the hardware
and software implementation. The GA is used to find the partitioning
solution. After a satisfactory partitioning solution is found, it is imple-
mented on the Altera DE2 FPGA board, which has a Nios II processor.
The hardware part is implemented on the FPGA, while the software
part is implemented on the Nios II processor.

1) Task Flowchart: The functionality of the proposed road-
following system is decomposed into tasks of some granularity first.
The level of granularity must be chosen carefully. If the granularity
level is too deep, the performance and expense may be degraded be-
cause of extra communications, and the computation resource used for
partitioning will be increased. However, if the granularity level is not
deep enough, the satisfactory codesign solution may not be found.

The task flowchart of the road-following system is shown in Fig. 10.
The functionality of the system is broken down into 10 tasks: Task A:
reading errors; Task B: calculating change-in-errors; Task C : fuzzi-
fication for error; Task D: fuzzification for change-in-error; Task E:
selecting fuzzy logic rules; Task F : computing the antecedent values;
Task G through Task I : calculating the crisp output; Task J : gener-
ating PWM signals to control the car. We define Task C and Task D
as concurrent tasks. They must be executed simultaneously.

2) Evaluation of Hardware/Software Implementation: The time
constraint for Task A is defined based on the baud rate for the RS-232
transmission. To meet the specification of the circuit on the car, Task H
must be finished within 25 ms and to guarantee the reliability of the
system, all tasks must be finished within 24 ms. Although all tasks
must be finished within 24 ms, there is no hard time constraint for each
individual task. Hence, we can define flexible time constraints within
reasonable ranges for tasks, but a solid time constraint for the whole
functionality. The time constraints are shown in Table I.

Table II shows the cost of each task on each device as well as
the communication cost. The price of hardware is evaluated by the
number of logic elements used to implement the user-defined logic.
We define the price of software implementation to be 0 because the
software already exists and no extra cost will be added if some tasks
are executed on software. The communication is considered if two
consecutive tasks are executed on different devices. In this case, com-
munication can happen on outputs of Task A to Task I , which are
logic vectors. The parallel input/output (PIO) is used for communica-
tion between the FPGA and the Nios II processor. The PIO module
is a library component included in the Nios development kit, provid-
ing a memory-mapped interface between the software module and the
hardware module. The communication time with PIO modules can be
neglected compared with other tasks executed on the software. Small
values are used for communication price and power consumption of
each PIO. The communication price and power consumption between
tasks are estimated based on the number of PIO used.

The partitioning result using the proposed GA is shown in Fig. 11.
The population in each generation is 50 and 50 generations are pro-

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 6, NOVEMBER 2010 695

TABLE I
TIME CONSTRAINTS OF TASKS

TABLE II
COST OF TASKS AND COMMUNICATION

Fig. 11. Fitness values, costs, and violations.

duced to get the solution. The time constraint and the price term are
weighted heavily to avoid deadline violation and high implementation
price. The final partitioning solution is to execute Task A on the hard-
ware, while to execute other tasks on the software. Thus, the hardware
module receives data through the RS-232 port from the camera and con-
verts the data into standard logic vectors. The software module makes
decisions on the steering control using the FLC and generates PWM
signals. The hardware module is a user-defined logic. The software
module is implemented on the Micrium’s MicroC/OS-II operation sys-
tem with the Nios II processor using C language. The configuration of
the hardware/software codesign implementation is shown in Fig. 12.

With the codesign implementation, all tasks can be finished within
22 ms, which meets the real-time specification. The number of logic
elements required for the codesign is 971 compared with 7066 for
the hardware design. Experiments have been conducted using the au-
tonomous road-following robot. The robot is made to perform the
autonomous road-following task. The robot is able to follow the road
at a speed of 0.9 m/s. Experiment results of the codesign implementa-

Fig. 12. Configuration of the codesign implementation on the DE2 board.

tion is similar to the hardware implementation, but the cost is reduced
significantly.

VI. CONCLUSION

In this paper, an intelligent vehicle that is capable of autonomous
road-following is designed and implemented on the FPGA. A FLC im-

696 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 6, NOVEMBER 2010

plemented on the FPGA is utilized to control the steering wheel accord-
ing to the deviation from the roads. Furthermore, a hardware/software
partitioning method based on GA is designed for embedded systems.
It utilizes multiple chromosomes for each individual solution to allow
concurrency of multiple tasks. Experiments with both FPGA and hard-
ware/software codesign implementation demonstrate that the vehicle
with these two kinds of application can automatically follow the curved
road. However, the codesign strategy leads to lower cost.

REFERENCES

[1] W. Tsui, M. S. Masmoudi, F. Karray, I. Song, and M. Masmoudi, “Soft-
computing-based embedded design of an intelligent wall/lane-following
vehicle,” IEEE/ASME Trans. Mechatronics, vol. 13, no. 1, pp. 125–135,
Feb. 2008.

[2] G. V. Raffo, G. K. Gomes, J. E. Normey-Rico, C. R. Kelber, and
L. B. Becker, “A predictive controller for autonomous vehicle path track-
ing,” IEEE Trans. Intell. Transp. Syst., vol. 10, no. 1, pp. 92–102, Mar.
2009.

[3] Y. Fu, H. Li, and M. Kaye, “Design and stability analysis of a fuzzy
controller for autonomous road following,” in Proc. IEEE Intell. Veh.
Symp., Xi’an, China, Jun. 2009, pp. 66–71.

[4] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller. Part I,”
IEEE Trans. Syst., Man Cybern., vol. 20, no. 2, pp. 404–418, Dec. 1990.

[5] T. H. S. Li, S. Chang, and Y. Chen, “Implementation of human-like driving
skills by autonomous fuzzy behavior control on an FPGA-based car-like
mobile robot,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 867–880,
Oct. 2003.

[6] D. Kim, “An implementation of fuzzy logic controller on the reconfig-
urable FPGA system,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 703–
715, Jun. 2000.

[7] C.-F. Juang and Y.-W. Tsao, “A type-2 self-organizing neural fuzzy system
and its FPGA implementation,” IEEE Trans. Syst., Man, Cybern., vol. 38,
no. 6, pp. 1537–1548, Dec. 2008.

[8] R. Niemann, Hardware/Software Co-Design for Data Flow Dominated
Embedded Systems. New York: Springer-Verlag, 1998.

[9] T. Wiangtong, P. Y. K. Cheung, and W. Luk, “Hardware/software codesign:
A systematic approach targeting data-intensive applications,” IEEE Signal
Process. Mag., vol. 22, no. 3, pp. 14–22, May 2005.

[10] L. Huiqun and D. F. Wong, “Integrated partitioning and scheduling for
hardware/software co-design,” in Proc. Int. Conf. Comput. Des.: VLSI
Comput. Processors, Oct. 1998, pp. 609–614.

[11] R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for
microcontrollers,” IEEE Des. Test Comput., vol. 10, no. 4, pp. 64–75,
Dec. 1993.

[12] P. P. Chu, FPGA Prototyping by VHDL Examples: Xilinx Spartan-3
Version. New York: Wiley-Interscience, 2008.

[13] D. Saha, R. S. Mitra, and A. Basu, “Hardware software partitioning using
genetic algorithm,” in Proc. Tenth Int. Conf. VLSI Des., Jan. 1997, pp. 115–
1603.

[14] R. P. Dick and N. K. Jha, “MOGAC: A multi objective genetic algo-
rithm for hardware-software cosynthesis of distributed embedded sys-
tems,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 17,
no. 10, pp. 920–935, Oct. 1998.

[15] L. Davis, Handbook on Genetic Algorithms. New York: Van Nos-
trand/Reinhold, 1991.

